Product Description

Plastic Spur gear ring and pinion CHINAMFG wheel pinion pom high precision plastic gear 

Spur gears customized brass gears

1. Material: carbon steel such as C45, 20CrMnTi, 40Cr, 42CrMo or stain less steel or copper or nylon.

2. Heat treatment: Hardening and Tempering, high frequency quenching, carburizing quenching and so on.

3. Standard: European or American standard.

4. We can make all kinds of gears according to clients drawing and specifications, specializing in non-standard


5. Good  quanlity with reasonable price, timely delivery and great customer service.

6. A professinal on drawing analysis, meeting discussing, program auditing, PC&QC.


1) Competitive price and good quality

2) Used for transmission systems.

3) Excellent performance, long using life

4) Could be  developed according to your drawings or data sheet

5) Pakaging:follow the customers’ requirements or as our usual package

6) Brand name: per every customer’s requirement.

7) Flexible minimum order quantity

8) Sample can be supplied

More advantages:

1,More competitive prices,
2,Shorter delivery date: 35 days.
3,We are the professional manufacturer in the field of Power Trans.Parts,specially for Timing Pulleys.
4,Produce standard and non-standard
5,Strict QC Management:ISO9001:2008,our engineer,Mr.Wang has specialized in the prodcution for over 20 years.


 All the products can be packed in cartons,or,you can choose the pallet packing.

 MADE IN CHINA can be pressed on wooden cases.Land,air,sea transportation are available.UPS,DHL,TNT,

FedEx and EMS are all supported.

Company Information
ZheJiang Mighty Machinery Co., Ltd.
 specializes in manufacturing Mechanical Power Transmission Products.
We Mighty is the division/branch of SCMC Group, which is a wholly state-owned company, established in 1980.
About Mighty:
-3 manufacturing factories, we have 5 technical staff, our FTY have strong capacity for design and process design, and more than
70 workers and double shift eveyday.
-Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and production in
-Strick quality control are apply in the whole prodution. we have incoming inspection,process inspection and final production
inspection which can ensure the perfect of the goods quality.
-14 years of machining experience. Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the
export. MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has got good reputation from CHINAMFG customers in international sales.


Q:Are you trading company or manufacturing ?

A:We are factory, also do trading company bussiness. Because our company do export 36 years, having our own factories, also cooperated with other many factories.

Q:What is the MOQ?

A:We not have a clear limit, 1 or 2 pcs is available.

Q:What is the delivery time?

A:3-5 days via DHL, TNT, UPS, FEDEX.

Different based on the different countires of  customers via ocean shipping. 

Q:How long can repaly the inquiry?

A:Within 24 hours.

Q:Do you provide samples? is it free or extra?

A:Yes, we provide free samples for checking the build quality and real perfomance of our products, the freight need to be Covered by customer.

Q:What is your terms of payment?

A:T/T, L/C, D/P, D/A, Western Union, etc, all decided by customer’s requirements. 


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Hobbing
Toothed Portion Shape: Spur Gear
Material: Steel
US$ 6.5/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

crown gear

How does a crown gear contribute to the overall efficiency of a system?

A crown gear plays a significant role in enhancing the overall efficiency of a system. Let’s explore how a crown gear contributes to system efficiency:

  • Power Transmission:

Crown gears efficiently transmit power between two intersecting shafts. By meshing with other gears in the system, the crown gear transfers rotational energy from the input shaft to the output shaft. The precise design and tooth profile of the crown gear ensure minimal energy losses during power transmission, resulting in high overall system efficiency.

  • Reduced Friction and Wear:

Crown gears are designed to minimize friction and wear. The tooth engagement between crown gears and other meshing gears is smooth due to their curved tooth profile. This reduces frictional losses and wear on the gear teeth, resulting in improved efficiency and longevity of the gear system. Additionally, crown gears distribute the load evenly across the gear teeth, minimizing localized stress concentrations and reducing the risk of premature failure.

  • Backlash Reduction:

Crown gears are effective in reducing or eliminating backlash, which is the slight clearance between the teeth of meshing gears. Backlash can cause inefficient power transmission and affect the accuracy of motion in a system. The tooth orientation and engagement properties of crown gears help minimize backlash, ensuring a tighter meshing with other gears. This reduces energy losses and improves the overall efficiency and precision of the system.

  • High Gear Ratios:

Crown gears can achieve high gear ratios due to their larger diameter and the increased number of teeth engaged with other gears. High gear ratios allow for precise speed reduction or torque multiplication, enabling the system to operate more efficiently. By optimizing the gear ratio, a crown gear contributes to the efficient conversion of input power into the desired output performance.

  • Versatility:

Crown gears offer versatility in different applications and system configurations. Their bidirectional capability allows them to handle variations in rotational direction without compromising efficiency. The ability to accommodate changes in rotational direction makes crown gears adaptable to a wide range of systems, contributing to overall system efficiency.

In summary, a crown gear enhances the overall efficiency of a system through efficient power transmission, reduced friction and wear, backlash reduction, high gear ratios, and versatility. By minimizing energy losses, optimizing gear engagement, and ensuring reliable power transfer, a crown gear plays a vital role in maximizing the efficiency and performance of the system it is employed in.

crown gear

How do crown gears contribute to power distribution in gear arrangements?

Crown gears play a significant role in power distribution within gear arrangements, ensuring efficient and balanced transmission of power. Let’s explore how crown gears contribute to power distribution:

  • Load Sharing:

Crown gears are often used in gear arrangements where multiple gears are present. In such arrangements, crown gears help distribute the power load among the gears. By sharing the load, each gear experiences a reduced load compared to if it were to carry the entire power load alone. This load sharing capability helps prevent overloading and excessive stress on individual gears, promoting more reliable and efficient power distribution.

  • Equal Torque Transfer:

Crown gears facilitate equal torque transfer among interconnected gears. When a crown gear meshes with another gear, the torque applied to the crown gear is transmitted to the meshing gear. Due to their tooth orientation and large contact area, crown gears enable a more uniform distribution of torque, ensuring that the torque is evenly transferred from one gear to another. This balanced torque distribution helps maintain smooth operation and prevent gear failures due to torque overload.

  • Elimination of Backlash:

Crown gears help reduce or eliminate backlash in gear arrangements. Backlash refers to the slight clearance or play between the teeth of meshing gears. It can cause inaccuracies, vibrations, and noise in the system. Crown gears, with their perpendicular tooth orientation and optimized meshing characteristics, minimize backlash and ensure a tight and precise engagement between gears. This tight meshing eliminates power losses associated with backlash and contributes to more efficient power distribution.

  • Better Load Distribution:

Due to their curved tooth profile and larger contact area, crown gears provide improved load distribution across the gear teeth. When power is transmitted through crown gears, the load is distributed over a greater number of teeth compared to other gear types. This even load distribution results in reduced stress concentrations on individual teeth, enhancing the gear’s load-carrying capacity and promoting uniform power distribution throughout the gear arrangement.

  • Enhanced System Efficiency:

By facilitating load sharing, equal torque transfer, backlash elimination, and improved load distribution, crown gears contribute to enhanced system efficiency. The balanced power distribution achieved through crown gears helps minimize power losses, reduce energy wastage, and optimize the overall efficiency of the gear arrangement. This improved efficiency translates into better performance, reduced energy consumption, and increased productivity in various mechanical systems.

In summary, crown gears contribute to power distribution in gear arrangements through load sharing, equal torque transfer, elimination of backlash, better load distribution, and enhanced system efficiency. These characteristics make crown gears an integral part of gear systems, ensuring reliable and efficient power transmission in a wide range of applications.

crown gear

How does a crown gear differ from other types of gears?

A crown gear, also known as a contrate gear or a contrate wheel, has distinct characteristics that set it apart from other types of gears. Let’s explore the key differences between a crown gear and other gears:

  • Tooth Orientation:

One of the primary differences is the tooth orientation. In a crown gear, the teeth are positioned perpendicular to the gear’s face. This is in contrast to other gears, such as spur gears or bevel gears, where the teeth are parallel or at an angle to the gear’s axis. The perpendicular tooth arrangement of a crown gear allows for specific functionalities in mechanical systems.

  • Directional Change:

A significant advantage of crown gears is their ability to change the direction of rotation in a mechanical system. By meshing with other gears, crown gears can redirect rotational motion by 90 degrees. This directional change capability is particularly useful in applications where a change in motion direction is required, such as conveyors, cranes, and other machinery.

  • Meshing with Different Gear Types:

Crown gears can mesh with gears that have parallel axes or bevel gears with intersecting axes. This versatility allows crown gears to work in conjunction with other gear types, enabling torque and rotational motion transfer between them. The perpendicular tooth orientation of crown gears facilitates smooth meshing with these different gear configurations.

  • Force Distribution:

Another distinguishing feature of crown gears is their ability to distribute forces and torques in mechanical systems. By meshing a crown gear with other gears, the load can be spread across a larger contact area. This distribution of forces helps reduce stress and wear on individual gear teeth, promoting smoother operation and improved durability of the gear system.

  • Applications:

Crown gears find applications in various industries due to their unique characteristics. They are commonly used in steering mechanisms, such as rack and pinion systems in automotive applications, where the crown gear meshes with a rack to convert rotational motion into linear motion for precise steering control. Crown gears are also employed in automation and robotics for motion control mechanisms, enabling changes in motion direction and force distribution in robotic arms, gantry systems, and other automated equipment.

In summary, a crown gear differs from other types of gears primarily in its tooth orientation, ability to change motion direction, versatility in meshing with different gear types, and force distribution capabilities. These distinctions make crown gears suitable for specific applications where directional change, force distribution, and precise motion control are required.

China Professional Plastic Spur Gear Ring and Pinion CZPT Wheel Pinion POM High Precision Plastic Gear with Good qualityChina Professional Plastic Spur Gear Ring and Pinion CZPT Wheel Pinion POM High Precision Plastic Gear with Good quality
editor by CX 2024-04-08